

InvisibleJS: Stealth JavaScript via Zero

Width Unicode

Empowering organizations with cutting-edge cybersecurity strategies to combat emerging digital threats effectively.

Severity: High

Advisory Report

TLP: WHITE

Advisory Type: Threat

SECURITY THREAT ADVISORY COUNCIL (STAC)

1 | soc@encyb.com

Advisory Number:

EN-2026004
Report Date:

14-JAN-2026

TLP: WHITE

EXECUTIVE SUMMARY

InvisibleJS is an open-source JavaScript obfuscation tool that hides fully executable code inside files that

appear visually blank by using zero-width Unicode characters along with runtime decoding and

execution. The technique can bypass manual code reviews and traditional static analysis, making it

attractive for stealthy malware delivery and supply-chain attacks.

• Active Region: Global

• Affected Sector: Software Development, Technology, Cybersecurity

• Affected Product: JavaScript / Node.js environments

• Severity: High

• Published Date: January 12, 2026

TECHNICAL DETAILS

• Target: Software supply chains, Node.js applications, JavaScript code repositories, CI/CD pipelines, and

development environments relying on manual or static code review.

• Root Cause: Inadequate handling and inspection of zero-width Unicode characters in source code,

allowing executable logic to be hidden in files that appear visually blank, combined with tooling that

prioritizes syntactic validity over visual integrity.

• Prerequisite For Exploitation: Ability to introduce or modify JavaScript files in a project (e.g., via

compromised dependencies, pull requests, or write access to repositories) and execution of the

affected code in a Unicode-compliant JavaScript runtime, with insufficient runtime or pre-execution

behavioral monitoring.

2 | soc@encyb.com

Advisory Number:

EN-2026004
Report Date:

14-JAN-2026

TLP: WHITE

IMPACT

RECOMMENDATIONS

REFERENCE

• https://cyberpress.org/invisiblejs-hides-executable-es-modules/?

• Enables stealthy malware loaders concealed in visually blank JavaScript files

• Bypasses manual code review and weak/static code analysis controls

• Increases risk of supply-chain compromise through malicious dependencies

• Complicates incident response and forensic analysis due to hidden, non-printable payloads

• Undermines trust in source code integrity across CI/CD pipelines.

• Implement Unicode-aware static analysis to detect zero-width and non-printable characters in
source code.

• Flag and investigate JavaScript files that appear blank but have non-zero file size or execution
behaviour.

• Enforce strict code review policies and dependency vetting for third-party npm packages and pull
requests.

• Integrate pre-execution sandboxing and automated build-time testing to identify anomalous or
hidden code behaviour.

• Train developers and security teams on Unicode-based obfuscation and steganography
techniques conduct periodic security scanning of repositories and dependencies for such evasion
methods.

 SECURE, SCALE, SUCCEED WITH

CONFIDENCE

www.encyb.com/contact-us/ EnCyb soc@encyb.com

www.encyb.com

https://www.linkedin.com/company/encyb/

